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Finite element analysis combined with the concepts of linear elastic fracture mechanics pro-
vides a practical and convenient means to study the fracture and crack growth of materials.
The onset criterion of crack propagation is based on the stress intensity factor, which is the
most important parameter that must be accurately estimated and facilitated by the singular
element. The displacement extrapolation technique is employed to obtain the SIFs at crack
tip. In this paper, two different crack growth criteria and the respective crack paths predic-
tion for several test cases are compared between the circumferential stress criterion and the
strain energy density criterion. Several examples are presented to compare each criterion
and to show the robustness of the numerical schemes.
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1. Introduction

Since the first studies in the early 1920s by Inglis (1913), Griffith (1920) and Irwin amd Wa-
shington (1957), the research in linear elastic fracture mechanics has led to the development of
a vast number of theories and applications. The propagation of a crack in a part leads to an
important displacement discontinuity. A more accurate way of modelling such a discontinuity
in a finite element mesh is to modify the part topology (due to crack propagation) and to per-
form automatic re-meshing. However, several methods have been proposed in the literature to
model this discontinuity without any re-meshing. Belytschko et al. (1994) suggested a meshless
method (Element free Galerkin method) where the discretisation is achieved by a model which
consists of nodes and a description of the surfaces of the model. More recently, two interesting
finite element techniques have been presented to deal with such discontinuities without any re-
meshing stage. The Strong Discontinuity Approach (SDA) (Oliver et al, 2006; Dias-da-Costa et
al., 2009) in which displacement jumps due to the presence of the crack are embedded locally
in each cracked finite element without affecting the neighbouring elements. The amplitude of
displacement jumps across the crack are defined using additional degrees of freedom related
to the plastic multiplier, leading to a formulation similar to standard non-associative plasticity
models. The Extended Finite Element Method (X-FEM) (Möes et al., 1999; Combescure et al.,
2008; Tran and Geniaut, 2012) in which the displacement-based approximation is enriched near
a crack by incorporating both discontinuous fields and the near tip asymptotic fields through a
Partition of Unity method (Babuska and Melenk, 1997; De Borst et al., 2006). However, these
recent techniques still have to be improved in order to deal with complex configurations such as
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multiple cracks, large deformation crack propagation, etc. When re-meshing is possible, a real
mesh discontinuity representing the crack seems to be more accurate. This technique is used, in
particular, in the 2D and 3D fracture numerical code FRANC (Carter et al., 2000; Hernández-
Gómez et al., 2004). However, whatever the technique used, the accuracy of the crack path
directly depends on the accuracy of kinking criteria.
In the literature, the comparative study of the propagation of one or multiple cracks in

homogeneous or multi-materials structures, using the various criteria, is studied little. This
paper presents a finite element analysis for the modeling of the crack growth problems using
the displacement extrapolation technique. This modeling is based on the circumferential stress
criterion and the strain energy density criterion to present a comparison of the crack propagation
paths obtained for various applications.
For the goal to model the cracks propagation in multi-materials structures, examples of

propagation in parts containing inclusions are studied. This characteristic can be very interesting
in civil engineering for propagations in concrete, or for propagations in composite or multi-layer
parts.

2. Crack growth criteria

In order to simulate crack propagation under linear elastic condition, the crack path direction
must be determined. There are several methods used to predict the direction of the crack trajec-
tory such as the maximum normal stress theory (or the maximum circumferential stress theory,
Erdogan and Sih (1963)) and the minimum strain energy density theory (Sih, 1974).

2.1. Maximum circumferential stress criterion (MCSC)

This criterion, introduced by Erdogan and Sih (1963) for elastic materials, states that the
crack propagates in the direction for which the circumferential stress σθθ is maximum. It is a
local approach since the direction of crack growth is directly determined by the local stress field
along a small circle of radius r centered at the crack tip.
The kinking angle θ of the propagating crack can be determined after calculating the values

of the stress intensity factors KI and KII
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where: KI and KII are respectively the stress intensity factors corresponding to mode I and
mode II loading.

2.2. Minimum strain energy density criterion (MSEDC)

Sih (1974) postulated the critical value of the local strain energy as a criterion of crack
instability. The minimum of strain energy density around the crack tip determines the direction of
crack propagation. The angle of crack propagation θ can be determined by solving the following
equations
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where E is the modulus of elasticity, ν is Poisson’s ratio, dW/dV is the elastic energy per unit
volume V and S represents the intensity of the strain energy density.

3. Numerical calculation of stress intensity factors

The fracture mechanics is based on the determination of stress intensity factors. It is there-
fore important to develop a numerical model capable of calculating these factors for different
geometries of cracked structures under different boundary conditions. In this paper, the displa-
cement extrapolation method (Phongthanapanich and Dechaumphai, 2004) is used to calculate
the stress intensity factors KI and KII as follows
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where: k = 3−4ν for plane strain and k = (3−ν)/(1+ν) for plane stress, L is the length of the
element side connected to the crack tip, ui and vi (i = b, c, d and e) are the nodal displacements
at nodes b, c, d and e in the x and y directions, respectively (see Fig. 1).

Fig. 1. Special elements used for the displacement extrapolation method

In order to obtain a better approximation of the field near the crack tip, special quarter point
finite elements proposed by Barsoum (1977) are used, where the mid-side node of the element
in the crack tip is moved to 1/4 of the length of the element L.

4. Numerical results and validation

4.1. Single edge cracked plate

This geometry is a rectangular plate (200mm × 100mm × 1mm) with an initial crack
(a = 30mm) is considered for 2-dimensional finite element analysis (Fig. 2). The material
properties of the aluminum alloy used in this study were taken as E = 72400MPa, ν = 0.3 and
KIC = 1297N/mm

3/2, where E, ν and KIC represents Young’s modulus, Poisson’s ratio and



376 A. Boulenouar et al.

Fig. 2. The geometry of the single edge cracked plate

fracture toughness, respectively. The cracked plate is submitted under a uniform tensile load σ
at both ends. The FE standard code ANSYS has been employed for modeling the problem.
For mesh generation of the cracked plate, the element type ‘PLANE183’ of ANSYS code is

used, as shown in Fig. 3a. It is a higher order two-dimensional, 8-node element having two degrees
of freedom at each node (translations in the nodal x and y directions), quadratic displacement
behavior and the capability of forming a triangular-shaped element, which is required at the
crack tip areas.

Due to the singular nature of the stress field in the vicinity of the crack, the singular elements
shown in Fig. 5b, are considered at each crack tip area, which are modeled with a finer mesh.

Fig. 3. (a) ‘PLANE183’ eight-node finite element and (b) singular option

A typical FE model of the cracked plate is shown in Fig. 4a. The special quarter point
singular elements proposed by Barsoum are used for the modeling of the singular field near the
crack tip (Fig. 4b). This mesh will serve to calculate the stress intensity factors KI and KII
using the displacement extrapolation method implemented in ANSYS software.

The analytical stress intensity factor KI for this problem is given by (Ewalds and Wanhill,
1989) as

KI = Fσ
√
πa (4.1)

where F is the correction factor given by
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The computed values of the stress intensity factor obtained by the displacement extrapolation
method (Eq. (3.1)1) under plane stress condition are compared with the numerical results using
the J-integral method (Rice, 1968) and the analytical solutions (Eq. (4.1)) as shown in Fig. 5.
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Fig. 4. (a) FE model of the cracked plate and (b) special elements used for the displacement
extrapolation method

Fig. 5. Relationship between SIF KI and the initial crack length size a/w

This comparison shows a good correlation between the three calculations. These results allow us
to conclude that the numerical model used correctly describes the stress and deformation field
near the crack tip, under pure mode I conditions.

Estimation of stress intensity factors by the extrapolation method leads us to determine the
kinking angle of the MCS criterion using Eq. (2.1). This angle can also be determined by the
MSED criterion by the mathematical resolution of Eqs. (2.2). Figure 6 illustrates the variation
of the angle estimated at each increment the crack length. There is a very good correspondence
between the results obtained by these approaches. In this example, the kinking angle θ varies
between 0 and −0.25◦, i.e. the crack propagates horizontally along the opening mode (mode I),
as shown in Fig. 9.

Figure 7a,b shows the final step of crack propagation obtained with the MCS and MSED
criterion. As expected, the crack propagates horizontally, depending on mode I loading. The
propagation path is very regular and the concentric mesh keeps good accuracy at the crack tip.
The results obtained allow us to conclude that the two criteria give a good crack propagation
path under mode I loading.

Figure 7c,d,e shows the final configuration corresponding to the last evaluated crack length
for the single edge cracked plate used by Alshoaibi and Ariffin (2006). The results obtained
from the FRANC2D/L program and the results given by Alshoaibi and Ariffin (2006) using the
adaptive mesh strategy are compared with those obtained from the FE software Ansys, using
the MCS criterion. The behavior of crack propagation is almost the same as shown in this figure.
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Fig. 6. Evolution of kinking angle θ during crack propagation, comparison between the MCS and
MSED criterion

Fig. 7. Crack propagation path under mode I loading: (a) MCS criterion, (b) MSED criterion,
(c) FRANC2D/L, (d) Alshoaibi and Ariffin (2006) results, (e) present study (MCS criterion)

4.2. Single edge angled crack

In what follows, we propose to study the propagation path of a crack inclined to the horizontal
with the angle α = +20◦. The determination of stress intensity factors, angle of direction and
crack growth path are made of plane stress problems and under the same loading conditions. A
rectangular plate with an oblique crack and final mesh for the first step of the crack propagation
are shown in Fig. 8.

Fig. 8. Geometry and final mesh of a single edge angled crack

Figure 9 shows the evolution of stress intensity factors KI and KII during crack propagation
steps obtained by the MCS criterion. These results are compared with those obtained by the
MSED criterion. The plotted curves show a good agreement between these two approaches.
Figure 10a compares the crack trajectories of the MSED and MCSD criterion. The global

trajectories are similar.
Figure 10b illustrates the variation of the kinking angle θ of the initial crack according to

the inclination angle α. The results obtained show that the direction angle θ increases with
the orientation angle α, and a slight difference ∆θ occurs between the plotted curves by the
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Fig. 9. Comparisons of SIFs for the single edge angled crack

Fig. 10. (a) Crack trajectories comparison for the single edge angled crack. (b) Initial direction angle θ
versus inclination angle α

two approaches. The maximum difference ∆θ is about 4◦ when the angle α varies from 0◦

to 80◦. This difference in the first load step may involve important differences in the final crack
trajectory for the examples whose geometry or loading is more complex. Bouchard (2000) and
Bouchard et al. (2003) showed, for complex applications such as double edge cracked plate with
two holes, that the MCS local criterion presents a more precise results than the MSED energy
criterion, and an advantage of being able to be used for elastic-plastic materials (Bocca et al.,
1991; Baouch, 1998; Lebaillif and Recho, 2007). The MSED criterion, the accuracy is directly
dependent on the number of elements in the ring around the crack tip (Bouchard et al., 2003).

Fig. 11. Crack propagation path of the inclined crack with stress distribution contours predicted by:
(a) MCS criterion and (b) MSED criterion

In Fig.11, one can visualize the final trajectory of the crack propagation estimated by both
approaches and the contours of stress distribution σy [MPa]. The calculations show that each
crack propagates with a deviation from the correct path towards the horizontal direction. This
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deviation is related to the choice of the crack increment length ∆a. Over this distance the
deviation is small and closer to reality.

4.3. Single edge cracked plate with one and two holes

In order to determine the effect of a geometrical defect on the crack propagation and to
provide a comparison between the two theories, we chose two geometries of a single edge cracked
plate with one and two holes. Figure 12 shows the dimensions [mm] and final mesh for the first
step of crack propagation.

Fig. 12. Geometry and final mesh for the single edge cracked plate with: (a) off-center hole and
(b) two holes

Figures 13a and 13b compare the variation of stress intensity factors KI and KII during
crack propagation steps predicted for both plates. The plotted curves show a good agreement
between the two theories. The values of SIFs KI and KII enable one to determine in Figs. 14a
and 14b the final crack path by calculating the crack propagation direction at each time step. For
the two geometries of the cracked plate, the results obtained show a good correlation between
the trajectories estimated by these approaches.

Fig. 13. Comparisons of SIFs for the single edge cracked plate with: (a) one hole and (b) two holes

Figures 13a and 13b show that in the case of crack propagation under mixed mode loading,
the SIF KI always takes positive values. Far from defect (Fig. 13a), SIF KII is null when the
inclination angle α is null, and decreases proportionally when the crack is directed towards the
hole under the effect of stress concentration due to the discontinuity in the geometry, in the
direction for which the circumferential stress σθθ is maximum (Erdogan and Sih, 1963). Using
the MSED criterion (Sih, 1974), this orientation can be explained by the fact that the crack
is directed towards the defect, in the direction for which the strain energy density (dW/dV )
is minimal. This behavior of crack propagation is similar to the observed in experiments by
Miranda et al. (2003), numerically by Boulenouar et al. (2012, 2013), Azocar et al. (2010), and
analytically by Valentini et al. (1999).
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Finally, we note that the sign of KII should be opposite to the sign of the crack direction θ
(Andersen, 1998). In our case, the SIF KI can present positive values if the hole is positioned
in the inferior part of the cracked plate.

Fig. 14. Crack trajectories comparison for: (a) single edge cracked plate with one hole and
(b) single edge cracked plate with two holes

In the case the plate contains only one hole, Fig. 15 illustrates the final step of crack propa-
gation path obtained by the two theories. We note that each crack is moving towards the hole.
This is because the hole creates a depression of stress that will change the maximum principal
stress field in the plate and drew the crack. Once it exceeds the hole, this crack moves away sli-
ghtly from the hole. These observations correspond well with those obtained by Bouchard et al.
(2003) and Rashid (1998). Figure 15 also illustrates the distribution of the maximum stresses σy
[MPa] in the plates, with a divergence between the results obtained by the two theories.

Fig. 15. Crack propagation path and stress distribution predicted by: (a) MCS criterion and
(b) MSED criterion

Results of numerical simulations shown in Fig. 16 clearly the influence of the second hole on
the crack propagation path predicted by both approaches. First of all, each crack directs slightly
towards the first hole, then it reorientates horizontally under the influence of the second hole.
These observations correspond well with those obtained by Lebaillif and Recho (2007).

Fig. 16. Crack propagation path and stress distribution predicted by: (a) MCS criterion and
(b) MSED criterion
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5. Conclusion

In this paper, two different crack growth criteria and the crack paths prediction for various
applications are compared using the maximum circumferential stress criterion and the strain
energy density criterion. For each example, we determined the angle of direction at each crack
increment length and the final path of crack propagation.

In order to obtain a better approximation of the field near the crack tip, special quarter
point finite elements proposed by Barsoum (1977) are used.

The displacement extrapolation method is used to determine the stress intensity factors
under mode I and mixed mode loading. Numerical calculations made by the finite element
method show that this technique can correctly describe the stress and deformations field near
the crack tip.

The two criteria give good results on the crack propagation path and the results between
them are very close.
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